Teorema Binomial - Tempat Blogging

Teorema Binomial


Masih ingat dengan Kombinasi pada bahan Kombinatorik? yups, pada kombinatorik telah diketahui bahwa kombinasi ialah banyaknya cara mengambil $r$ objek dari sekumpulan $n$ objek tanpa memperhatikan urutan, sanggup ditulis:

$$C(n, r)=\frac{n!}{(n-r)!r!}$$
namun, dalam perluasan binomial, kombinasi ini sering dilambangkan dengan:
$$\begin{pmatrix}n\\r\end{pmatrix}=\frac{n!}{\left ( n-r \right )!r!}$$
disebut sebagai koefisien binomial, alasannya ialah menyatakan koefisien-koefisien setiap suku pada hasil pembagian terstruktur mengenai binomial.

untuk lebih memahaminya, perhatikan klarifikasi berikut.
seandainya kita mencoba menjabarkan bentuk $(x+y)^n$, dengan $n$ bilangan bundar positif, kita perhatikan bahwa bentuk ini sanggup kita tuliskan sebagai perkalian sebanyak $n$ faktor dari $(x+y)$. Untuk membentuk suatu suku pada hasil perkalian ini, kita harus menentukan salah satu dari $x$ atau $y$ dari masing-masing faktor. Dengan kata lain, sebagian faktor menyumbangkan $x$ dan sebagian lagi menyumbangkan $y$. Banyaknya faktor yang menyumbangkan $y$ merupakan suatu bilangan bulat, misal $r$ dengan $0\leq r\leq n$, dan faktor yang tersisa yaitu sebanyak $n-r$ menyumbangkan $x$, sehingga membentuk suku $x^{n-r}y^{r}$, oleh alasannya ialah itu, banyaknya suku yang berbentuk  $x^{n-r}y^{r}$ ini sama dengan banyaknya cara kita menentukan sejumlah $r$ variabel variabel $y$ dari $n$ variabel $y$ yang tersedia pada setiap faktor. Jadi, koefisien $x^{n-r}y^{r}$ ialah $\binom{n}{r}$
Oleh alasannya ialah itu, bentuk $(x+y)^{n}$ sanggup kita tulis dalam bentuk perluasan sebagai berikut:$$(x+y)^n=\binom{n}{0}x^n+\binom{n}{1}x^{n-1}y+\binom{n}{2}x^{n-2}y^2+...+\binom{n}{n}y^n$$
inilah yang disebut dengan teorema binomial.

Teorema Binomial:
Misalakan $x$ dan $y$ ialah variabel, dan $n$ ialah bilangan bundar positif,  maka:
$$(x+y)^n=\binom{n}{0}x^n+\binom{n}{1}x^{n-1}y+\binom{n}{2}x^{n-2}y^2+...+\binom{n}{n}y^n$$
atau sanggup pula di tulis:
$$(x+y)^n=\sum_{r=0}^n \binom{n}{r}{x^{n-r}y^r}$$

Contoh 1:
Ekspansikan binomial $(x+2y)^4$

Jawab:
$\begin{align*}(x+2y)^4&=\binom{4}{0}x^4+\binom{4}{1}x^3(2y)+\binom{4}{2}x^2(2y)^2+\binom{4}{3}x(2y)^3+\binom{4}{4}(2y)^4\\&=x^4+4x^3(2y)+6x^2(2y)^2+4x(2y)^3+(2y)^4\\&=x^4+8x^3y+6x^2(4y^2)+4x(8y^3)+16y^4\\&=x^4+8x^3y+24x^2y^2+32xy^3+16y^4\end{align*}$

Contoh 2:
Ekspansikan binomial $(2x-y)^3$

Jawab:
$\begin{align*}(2x-y)^3&=\left( 2x+(-y)\right)^3\\&=\binom{3}{0}(2x)^3+\binom{3}{1}(2x)^2(-y)+\binom{3}{2}(2x)(-y)^2+\binom{3}{3}(-y)^3\\&=(2x)^3+3(2x)^2(-y)+3(2x)(-y)^2+(-y)^3\\&=8x^3+3(4x^2)(-y)+3(2x)(y^2)-y^3\\&=8x^3-12x^2y+6xy^2-y^3\end{align*}$


Menentukan Suku Dan Koefisien Binomial
Dari formula binomial :
$$(x+y)^n=\sum_{r=0}^n \binom{n}{r}{x^{n-r}y^r}$$
suku ke $k$ dari hasil penjabarannya sanggup ditentukan sebagai berikut:
$$\boxed{\binom{n}{k-1}x^{n-(k-1)}y^{(k-1)}}$$

Sekarang kembali perhatikan contoh 1 di atas, bentuk $(x+2y)^4$ sesudah kita jabarkan, kita peroleh:$$(x+2y)^4=x^4+8x^3y+24x^2y^2+32xy^3+16y^4$$
Suku-suku pada perluasan binomial $(x+2y)^4$ ialah :
suku ke-1: $x^4$ dengan koefisien $1$
suku ke-2 : $8x^3y$ dengan koefisien $8$
suku ke-3 : $24x^2y^2$ dengan koefisien $24$
suku ke-4 : $32xy^3$ dengan koefisien $32$
suku ke-5 : $16y^4$ dengan koefisien $16$

Jika kita ingin menentukan suku tertentu saja, kita tidak perlu menjabarkan secara keseluruhan, namun kita cukup memakai formula yang telah diberikan di atas. Misal, kita akan menentukan suku ke-3 dari $(x+2y)^4$:
$\begin{align*}\binom{n}{k-1}x^{n-(k-1)}(2y)^{(k-1)}&=\binom{4}{3-1}x^{4-(3-1)}(2y)^{(3-1)}\\&=\binom{4}{2}x^2(2y)^2\\&=6x^2.4y^2\\&=24x^2y^2\end{align*}$

Contoh 3:
Tentukan suku ke-$3$ dari $(2x-3y)^5$ dan tentukan nilai koefisiennya

Jawab:
Suku ke-3 artinya $k=3$
$\begin{align*}\binom{n}{k-1}(2x)^{5-(3-1)}(-3y)^{(3-1)}&=\binom{5}{2}(2x)^{3}(-3y)^2\\&=10(8x^3)(9y^2)\\&=720x^3y^2\end{align*}$
Jadi suku ke-3 dari $(2x-3y)^5$ ialah $720x^3y^2$ dengan nilai koefisien $720$

Contoh 4:
Tentukan koefisien $x^2$ dari hasil perluasan $(3x-2)^9$ dan tentukan pada suku ke berapa suku tersebut berada

Jawab:
$x^2=x^{9-(k-1)}\rightarrow 2=10-k\rightarrow k=8$

$\begin{align*}\binom{9}{8-1}(3x)^{9-(8-1)}(-2)^{(8-1)}&=\binom{9}{7}(3x)^2(-2)^7\\&=36(9x^2)(-128)\\&=-41472x^2\end{align*}$

Jadi, pada perluasan $(3x-2)^9$, $x^2$ terletak pada suku ke 8 dengan nilai koefisien $-41.472$.

Contoh 5:
Tentukan koefisien $x^4$ dari hasil perluasan $\left (2x^2+\frac{1}{\sqrt{x}} \right )^7$

Jawab:

$(2x+\frac{1}{\sqrt{x}})^7=(2x+x^{-\frac{1}{2}})^7$
maka:
$\begin{align*}(x^2)^{7-(k-1)}\left (x^{-\frac{1}{2}}\right )^{k-1}&=x^4\\(x^2)^{8-k}x^{-\frac{1}{2}k+\frac{1}{2}}&=x^4\\x^{16-2k}x^{-\frac{1}{2}k+\frac{1}{2}}&=x^4\\x^{\frac{33-5k}{2}}&=x^4\end{align*}$

$\frac{33-5k}{2}=4\rightarrow k=5$

$\begin{align*}\binom{7}{5-1}(2x^2)^{7-(5-1)}(x^{-\frac{1}{2}})^{5-1}&=\binom{7}{4}(2x^2)^3x^{-2}\\&=35(8x^6)(x^{-2})\\&=280x^4\end{align*}$

Jadi, koefisien $x^4$ ialah $280$.



$\blacksquare$ Denih Handayani, 2017 Save as Pdf
Show comments
Hide comments

0 Response to "Teorema Binomial"

Post a Comment

Blog ini merupakan Blog Dofollow, karena beberapa alasan tertentu, sobat bisa mencari backlink di blog ini dengan syarat :
1. Tidak mengandung SARA
2. Komentar SPAM dan JUNK akan dihapus
3. Tidak diperbolehkan menyertakan link aktif
4. Berkomentar dengan format (Name/URL)

NB: Jika ingin menuliskan kode pada komentar harap gunakan Tool untuk mengkonversi kode tersebut agar kode bisa muncul dan jelas atau gunakan tool dibawah "Konversi Kode di Sini!".

Klik subscribe by email agar Anda segera tahu balasan komentar Anda

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel

close