Cara Merasionalkan Penyebut Bentuk Akar Pangkat Tiga Dilengkapi Soal Penerapan
Thursday, July 5, 2018
Add Comment
Materi ihwal pangkat (eksponen) dan akar sudah diperkenalkan semenjak SMP, termasuk bagaimana cara merasionalkan bentuk bilangan pecahan dengan penyebut berbentuk akar. Namun sebagian besar tumpuan berguru yang dipakai di sekolah hanya sebatas merasionalkan bentuk akar kuadrat. Masih jarang buku yang membahas bagaimana cara merasionalkan bentuk akar pangkat tiga. Padahal, cara merasionalkan bentuk akar pangkat tiga sangat penting sebagai penunjang bahan lainnya, contohnya dalam menuntaskan limit fungsi aljabar yang memuat akar pangkat tiga tanpa menggunkan dalil L'Hopital.
Kita sudah diperkenalkan cara merasionalkan bentuk pecahan dengan penyebut akar kuadrat yakni dengan mengalikan dengan bentuk sekawannya, contohnya $\displaystyle\frac{1}{\sqrt{5}-2}$ sanggup kita rasionalkan dengan mengalikannya dengan $\displaystyle\frac{\sqrt{5}+2}{\sqrt{5}+2}$ lantaran bentuk sekawan dari $\displaystyle \sqrt{5}-2$ yakni $\displaystyle \sqrt{5}+2$. Lalu bagaimana cara merasionalkan bentuk ini $\displaystyle\frac{3}{\sqrt[3]{5}-\sqrt[3]{2}}$?. Jika anda pikir cara merasionalkan bentuk tersebut yakni dengan mengalikannya dengan $\displaystyle\frac{\sqrt[3]{5}+\sqrt[3]{2}}{\sqrt[3]{5}+\sqrt[3]{2}}$ maka anda keliru. Untuk sanggup menyelesaikannya mari kita pahami terlebih dahulu mengenai definisi dari bentuk akar sekawan berikut.
Apa Definisi Dari Akar Sekawan?
Informasi:
Tulisan pada laman ini memuat persamaan matematika yang cukup panjang dan tidak responsive pada media mobile, kalau tampilan persamaan matematika di smartphone anda terpotong, silakan buka laman ini dalam mode landscape, Sangat disarankan membuka laman ini via PC/Laptop
Tulisan pada laman ini memuat persamaan matematika yang cukup panjang dan tidak responsive pada media mobile, kalau tampilan persamaan matematika di smartphone anda terpotong, silakan buka laman ini dalam mode landscape, Sangat disarankan membuka laman ini via PC/Laptop
Apa Definisi Dari Akar Sekawan?
Bersumber dari Ensiklopedia Matematika yang ditulis oleh ST. Nugroho dan B. Harahap, definisi dari akar sekawan yakni sebagai berikut:
$\displaystyle\sqrt{a}+\sqrt{b}$ sekawan dengan $\displaystyle\sqrt{a}-\sqrt{b}$ alasannya $\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)=a-b$
Perhatikan beberapa teladan akar sekawan berikut:
$2-\sqrt{3}$ sekawan dengan $2+\sqrt{3}$ alasannya $\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3=1$
$\sqrt{5}+\sqrt{2}$ sekawan dengan $\sqrt{5}-\sqrt{2}$ alasannya $\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)=5-2=3$
$\sqrt{8}$ sekawan dengan$\sqrt{2}$, alasannya $\sqrt{8}\times\sqrt{2}=\sqrt{16}=4$
Bentuk Sekawan Akar Pangkat Tiga
Bentuk sekawan dari $\displaystyle\sqrt[3]{a}$ yakni $\displaystyle\sqrt[3]{a^2}$, sebab:
$\begin{align*}\sqrt[3]{a}\times\sqrt[3]{a^2}&=a^{\frac{1}{3}}\times a^{\frac{2}{3}}\\&=a^{\frac{1}{3}+\frac{2}{3}}\\&=a^{\frac{3}{3}}\\&=a^1\\&=a\end{align*}$
Sekarang, bagaimana bentuk akar sekawan dari $\displaystyle\sqrt[3]{a}+\sqrt[3]{b}$?
Bentuk akar sekawan dari bentuk di atas pastinya harus menyebabkan "muncul" pangkat tiga pada kedua suku bentuk akar di atas, bentuk aljabar sebagai landasan yang akan kita gunakan yakni sebagai berikut:
$\begin{align*}x^3-y^3&=(x-y)(x^2+xy+y^2)\\x^3+y^3&=(x+y)(x^2-xy+y^2)\end{align*}$
Contoh, akar sekawan dari $\displaystyle\sqrt[3]{5}-\sqrt[3]{2}$ yakni $\displaystyle\left(\sqrt[3]{5}\right)^2+\sqrt[3]{5}.\sqrt[3]{2}+\left(\sqrt[3]{2}\right)^2$ atau sanggup juga ditulis $\displaystyle\sqrt[3]{25}+\sqrt[3]{10}+\sqrt[3]{4}$ sebab:
$\begin{align*}\left(\sqrt[3]{5}-\sqrt[3]{2}\right)\left(\sqrt[3]{25}+\sqrt[3]{10}+\sqrt[3]{4}\right)&=\left(\sqrt[3]{5}\right)^3-\left(\sqrt[3]{2}\right)^3\\&=5-2\\&=3\end{align*}$
Berikut ini bentuk-bentuk akar sekawan akar pangkat tiga:
Bentuk sekawan dari $\displaystyle\sqrt[3]{a}$ yakni $\displaystyle\sqrt[3]{a^2}$
Bentuk sekawan dari $\displaystyle\sqrt[3]{a}-\sqrt[3]{b}$ yakni $\displaystyle\sqrt[3]{a^2}+\sqrt[3]{ab}+\sqrt[3]{b^2}$
Bentuk sekawan dari $\displaystyle\sqrt[3]{a}+\sqrt[3]{b}$ yakni $\displaystyle\sqrt[3]{a^2}-\sqrt[3]{ab}+\sqrt[3]{b^2}$
Bentuk sekawan dari $\displaystyle a-\sqrt[3]{b}$ yakni $\displaystyle a^2+a\sqrt[3]{b}+\sqrt[3]{b^2}$
Bentuk sekawan dari $\displaystyle a+\sqrt[3]{b}$ yakni $\displaystyle a^2-a\sqrt[3]{b}+\sqrt[3]{b^2}$
Bentuk sekawan dari $\displaystyle \sqrt[3]{a}-b$ yakni $\displaystyle\sqrt[3]{a^2}+b\sqrt[3]{a}+b^2$
Bentuk sekawan dari $\displaystyle \sqrt[3]{a}+b$ yakni $\displaystyle\sqrt[3]{a^2}-b\sqrt[3]{a}+b^2$
Merasionalkan Penyebut Akar Pangkat Tiga
Setelah mengetahui bentuk sekawan akar pangkat tiga, kini kita akan memakai bentuk sekawan tersebut untuk merasionalkan penyebut akar pangkat tiga, perhatikan beberapa teladan di bawah ini:
Contoh 1
Bentuk rasional dari $\displaystyle\frac{9}{2\sqrt[3]{2}}$ yakni ....
Jawab:
Bentuk akar sekawan dari $\sqrt[3]{2}$ yakni $\sqrt[3]{4}$
$\begin{align*}\frac{9}{2\sqrt[3]{2}}\times\frac{\sqrt[3]{4}}{\sqrt[3]{4}}&=\frac{9\sqrt[3]{4}}{2\times 2}\\&=\frac{9}{4}\sqrt[3]{4}\end{align*}$
Contoh 2
Bentuk rasional dari $\displaystyle\frac{5}{\sqrt[3]{7}-\sqrt[3]{2}}$ yakni ....
Jawab:
Bentuk akar sekawan dari $\sqrt[3]{7}-\sqrt[3]{2}$ yakni $\sqrt[3]{49}+\sqrt[3]{14}+\sqrt[3]{4}$ maka:
$\begin{align*}\frac{5}{\sqrt[3]{7}-\sqrt[3]{2}}\times\frac{\sqrt[3]{49}+\sqrt[3]{14}+\sqrt[3]{4}}{\sqrt[3]{49}+\sqrt[3]{14}+\sqrt[3]{4}}&=\frac{5\left(\sqrt[3]{49}+\sqrt[3]{14}+\sqrt[3]{4}\right)}{7-2}\\&=\frac{5\left(\sqrt[3]{49}+\sqrt[3]{14}+\sqrt[3]{4}\right)}{5}\\&=\sqrt[3]{49}+\sqrt[3]{14}+\sqrt[3]{4}\end{align*}$
Contoh 3
Bentuk rasional dari $\displaystyle\frac{\sqrt[3]{2}}{\sqrt[3]{2}+1}$ yakni ....
Jawab:
Bentuk akar sekawan dari $\sqrt[3]{2}+1$ yakni $\sqrt[3]{4}-\sqrt[3]{2}+1$
$\begin{align*}\frac{\sqrt[3]{2}}{\sqrt[3]{2}+1}\times\frac{\sqrt[3]{4}-\sqrt[3]{2}+1}{\sqrt[3]{4}-\sqrt[3]{2}+1}&=\frac{\sqrt[3]{2}\left(\sqrt[3]{4}-\sqrt[3]{2}+1\right)}{2+1}\\&=\frac{\sqrt[3]{8}-\sqrt[3]{4}+\sqrt[3]{2}}{3}\\&=\frac{2-\sqrt[3]{4}+\sqrt[3]{2}}{3}\\&=\frac{1}{3}\left(2-\sqrt[3]{4}+\sqrt[3]{2}\right)\end{align*}$
Contoh Penerapan dalam Menyelesaikan Masalah Limit
Berikut ini teladan soal limit yang melibatkan akar pangkat tiga,
$\displaystyle\lim_{x\to 8}\frac{x-8}{\sqrt[3]{x}-2}=$ ....
Jika kita substitusi eksklusif $x=8$, maka akan kita peroleh bentuk tak tentu $\displaystyle\frac{0}{0}$, dengan demikin diharapkan manupulasi aljabar untuk menyelesaikannya dengan cara menghilangkan faktor komplotan pembilang dan penyebut yang menimbulkan nilai $\displaystyle\frac{0}{0}$.
Bentuk akar sekawan dari $\sqrt[3]{x}-2$ yakni $\sqrt[3]{x^2}+2\sqrt[3]{x}+4$, dan $\left(\sqrt[3]{x}-2\right)\left(\sqrt[3]{x^2}+2\sqrt[3]{x}+4\right)=x-8$ maka:
$\begin{align*}\lim_{x\to 8}\frac{x-8}{\sqrt[3]{x}-2}\times\frac{\sqrt[3]{x^2}+2\sqrt[3]{x}+4}{\sqrt[3]{x^2}+2\sqrt[3]{x}+4}&=\lim_{x\to 8}\frac{(x-8)(\sqrt[3]{x^2}+2\sqrt[3]{x}+4)}{x-8}\\&=\lim_{x\to 8}\sqrt[3]{x^2}+2\sqrt[3]{x}+4\\&=\sqrt[3]{64}+2\sqrt[3]{8}+4\\&=4+4+4\\&=12\end{align*}$
Demikianlah cara merasionalkan penyebut akar pangkat tiga yang sanggup aku bahas.
Semoga bermanfaat
$\displaystyle\sqrt{a}+\sqrt{b}$ sekawan dengan $\displaystyle\sqrt{a}-\sqrt{b}$ alasannya $\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)=a-b$
Perhatikan beberapa teladan akar sekawan berikut:
$2-\sqrt{3}$ sekawan dengan $2+\sqrt{3}$ alasannya $\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3=1$
$\sqrt{5}+\sqrt{2}$ sekawan dengan $\sqrt{5}-\sqrt{2}$ alasannya $\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)=5-2=3$
$\sqrt{8}$ sekawan dengan$\sqrt{2}$, alasannya $\sqrt{8}\times\sqrt{2}=\sqrt{16}=4$
Bentuk Sekawan Akar Pangkat Tiga
Bentuk sekawan dari $\displaystyle\sqrt[3]{a}$ yakni $\displaystyle\sqrt[3]{a^2}$, sebab:
$\begin{align*}\sqrt[3]{a}\times\sqrt[3]{a^2}&=a^{\frac{1}{3}}\times a^{\frac{2}{3}}\\&=a^{\frac{1}{3}+\frac{2}{3}}\\&=a^{\frac{3}{3}}\\&=a^1\\&=a\end{align*}$
Sekarang, bagaimana bentuk akar sekawan dari $\displaystyle\sqrt[3]{a}+\sqrt[3]{b}$?
Bentuk akar sekawan dari bentuk di atas pastinya harus menyebabkan "muncul" pangkat tiga pada kedua suku bentuk akar di atas, bentuk aljabar sebagai landasan yang akan kita gunakan yakni sebagai berikut:
$\begin{align*}x^3-y^3&=(x-y)(x^2+xy+y^2)\\x^3+y^3&=(x+y)(x^2-xy+y^2)\end{align*}$
Contoh, akar sekawan dari $\displaystyle\sqrt[3]{5}-\sqrt[3]{2}$ yakni $\displaystyle\left(\sqrt[3]{5}\right)^2+\sqrt[3]{5}.\sqrt[3]{2}+\left(\sqrt[3]{2}\right)^2$ atau sanggup juga ditulis $\displaystyle\sqrt[3]{25}+\sqrt[3]{10}+\sqrt[3]{4}$ sebab:
$\begin{align*}\left(\sqrt[3]{5}-\sqrt[3]{2}\right)\left(\sqrt[3]{25}+\sqrt[3]{10}+\sqrt[3]{4}\right)&=\left(\sqrt[3]{5}\right)^3-\left(\sqrt[3]{2}\right)^3\\&=5-2\\&=3\end{align*}$
Berikut ini bentuk-bentuk akar sekawan akar pangkat tiga:
Bentuk sekawan dari $\displaystyle\sqrt[3]{a}$ yakni $\displaystyle\sqrt[3]{a^2}$
Bentuk sekawan dari $\displaystyle\sqrt[3]{a}-\sqrt[3]{b}$ yakni $\displaystyle\sqrt[3]{a^2}+\sqrt[3]{ab}+\sqrt[3]{b^2}$
Bentuk sekawan dari $\displaystyle\sqrt[3]{a}+\sqrt[3]{b}$ yakni $\displaystyle\sqrt[3]{a^2}-\sqrt[3]{ab}+\sqrt[3]{b^2}$
Bentuk sekawan dari $\displaystyle a-\sqrt[3]{b}$ yakni $\displaystyle a^2+a\sqrt[3]{b}+\sqrt[3]{b^2}$
Bentuk sekawan dari $\displaystyle a+\sqrt[3]{b}$ yakni $\displaystyle a^2-a\sqrt[3]{b}+\sqrt[3]{b^2}$
Bentuk sekawan dari $\displaystyle \sqrt[3]{a}-b$ yakni $\displaystyle\sqrt[3]{a^2}+b\sqrt[3]{a}+b^2$
Bentuk sekawan dari $\displaystyle \sqrt[3]{a}+b$ yakni $\displaystyle\sqrt[3]{a^2}-b\sqrt[3]{a}+b^2$
Merasionalkan Penyebut Akar Pangkat Tiga
Setelah mengetahui bentuk sekawan akar pangkat tiga, kini kita akan memakai bentuk sekawan tersebut untuk merasionalkan penyebut akar pangkat tiga, perhatikan beberapa teladan di bawah ini:
Contoh 1
Bentuk rasional dari $\displaystyle\frac{9}{2\sqrt[3]{2}}$ yakni ....
Jawab:
Bentuk akar sekawan dari $\sqrt[3]{2}$ yakni $\sqrt[3]{4}$
$\begin{align*}\frac{9}{2\sqrt[3]{2}}\times\frac{\sqrt[3]{4}}{\sqrt[3]{4}}&=\frac{9\sqrt[3]{4}}{2\times 2}\\&=\frac{9}{4}\sqrt[3]{4}\end{align*}$
Contoh 2
Bentuk rasional dari $\displaystyle\frac{5}{\sqrt[3]{7}-\sqrt[3]{2}}$ yakni ....
Jawab:
Bentuk akar sekawan dari $\sqrt[3]{7}-\sqrt[3]{2}$ yakni $\sqrt[3]{49}+\sqrt[3]{14}+\sqrt[3]{4}$ maka:
$\begin{align*}\frac{5}{\sqrt[3]{7}-\sqrt[3]{2}}\times\frac{\sqrt[3]{49}+\sqrt[3]{14}+\sqrt[3]{4}}{\sqrt[3]{49}+\sqrt[3]{14}+\sqrt[3]{4}}&=\frac{5\left(\sqrt[3]{49}+\sqrt[3]{14}+\sqrt[3]{4}\right)}{7-2}\\&=\frac{5\left(\sqrt[3]{49}+\sqrt[3]{14}+\sqrt[3]{4}\right)}{5}\\&=\sqrt[3]{49}+\sqrt[3]{14}+\sqrt[3]{4}\end{align*}$
Contoh 3
Bentuk rasional dari $\displaystyle\frac{\sqrt[3]{2}}{\sqrt[3]{2}+1}$ yakni ....
Jawab:
Bentuk akar sekawan dari $\sqrt[3]{2}+1$ yakni $\sqrt[3]{4}-\sqrt[3]{2}+1$
$\begin{align*}\frac{\sqrt[3]{2}}{\sqrt[3]{2}+1}\times\frac{\sqrt[3]{4}-\sqrt[3]{2}+1}{\sqrt[3]{4}-\sqrt[3]{2}+1}&=\frac{\sqrt[3]{2}\left(\sqrt[3]{4}-\sqrt[3]{2}+1\right)}{2+1}\\&=\frac{\sqrt[3]{8}-\sqrt[3]{4}+\sqrt[3]{2}}{3}\\&=\frac{2-\sqrt[3]{4}+\sqrt[3]{2}}{3}\\&=\frac{1}{3}\left(2-\sqrt[3]{4}+\sqrt[3]{2}\right)\end{align*}$
Contoh Penerapan dalam Menyelesaikan Masalah Limit
Berikut ini teladan soal limit yang melibatkan akar pangkat tiga,
$\displaystyle\lim_{x\to 8}\frac{x-8}{\sqrt[3]{x}-2}=$ ....
Jika kita substitusi eksklusif $x=8$, maka akan kita peroleh bentuk tak tentu $\displaystyle\frac{0}{0}$, dengan demikin diharapkan manupulasi aljabar untuk menyelesaikannya dengan cara menghilangkan faktor komplotan pembilang dan penyebut yang menimbulkan nilai $\displaystyle\frac{0}{0}$.
Bentuk akar sekawan dari $\sqrt[3]{x}-2$ yakni $\sqrt[3]{x^2}+2\sqrt[3]{x}+4$, dan $\left(\sqrt[3]{x}-2\right)\left(\sqrt[3]{x^2}+2\sqrt[3]{x}+4\right)=x-8$ maka:
$\begin{align*}\lim_{x\to 8}\frac{x-8}{\sqrt[3]{x}-2}\times\frac{\sqrt[3]{x^2}+2\sqrt[3]{x}+4}{\sqrt[3]{x^2}+2\sqrt[3]{x}+4}&=\lim_{x\to 8}\frac{(x-8)(\sqrt[3]{x^2}+2\sqrt[3]{x}+4)}{x-8}\\&=\lim_{x\to 8}\sqrt[3]{x^2}+2\sqrt[3]{x}+4\\&=\sqrt[3]{64}+2\sqrt[3]{8}+4\\&=4+4+4\\&=12\end{align*}$
Demikianlah cara merasionalkan penyebut akar pangkat tiga yang sanggup aku bahas.
Semoga bermanfaat
0 Response to "Cara Merasionalkan Penyebut Bentuk Akar Pangkat Tiga Dilengkapi Soal Penerapan"
Post a Comment
Blog ini merupakan Blog Dofollow, karena beberapa alasan tertentu, sobat bisa mencari backlink di blog ini dengan syarat :
1. Tidak mengandung SARA
2. Komentar SPAM dan JUNK akan dihapus
3. Tidak diperbolehkan menyertakan link aktif
4. Berkomentar dengan format (Name/URL)
NB: Jika ingin menuliskan kode pada komentar harap gunakan Tool untuk mengkonversi kode tersebut agar kode bisa muncul dan jelas atau gunakan tool dibawah "Konversi Kode di Sini!".
Klik subscribe by email agar Anda segera tahu balasan komentar Anda